Relativistic Description of Few-Nucleon Systems
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Lecture II

Theory: Two and Three Nucleon Systems
* Introduction to the Covariant Spectator Theory.

* How are the bound state and scattering equations
obtained? What are the normalization conditions?
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Normalization condition for two-body relativistic bound
states

* Three-body CS equation

* Conclusions



Theoretical Assumptions

* Elementary particles (those in the Lagrangian) produce poles in the

scattering amplitude e
>—< M ~—

m- —s

* Nuclei are not elementary (comment: in some, very low energy EFT
calculations, they may be treated as effective particles). No single
Feynman diagram will have the bound state pole; it must be generated
from an infinite sum of Feynman diagrams, much as the geometric series

enerates a pole: Z
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Therefore we must sum up infinite series of diagrams in order to treat
nuclear bound states.

* Nuclei arise from the NN (and NNN) interactions.

* Nucleon resonances are frozen out (i.e. they do not needed to be treated
dynamically, but can be put into the interaction).

for identical particles, symmetrize the kernel:
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CS equations for 2-body systems [ ]

* scattering amplitudes: an infinite sum of interactions V

VI G NV ¢ on-shell
M = : + particle

* if a bound state exists, there is a pole in the scattering amplitude
_x—@j = M + | R | residue: finite
o J at the pole

* equation for the bound state vertex functions: obtained from the
scattering equation near the bound state pole

* the bound state normalization condition follows from examination of
the residue of the bound state pole



Equivalence of the two-body BS and CS equations

* Inboth cases, the two-body equation has the same form
Mg (p', D P) = Vs (P, s P)+ [ Vi (9K PY Gy (ks PYM 5k, p3 P)
M ys(p', piP) = Vys(p', p P) + JM ss(P' ks P) G (ks PYViys (k, p; P)

Ms(p',piP) = Ve (', ps P) + chs(p',k;P)Gcs(k;P)M cs(k,piP)

Equate the amplitudes, and determine the relation between the

kernels 1 1
M g = Vg [1 - GBSVBS] = [1 - VCSGCS] Vs =M=
Vs = Vs + Vs [Gcs — Gy ]VBS
or Vies = Vs + Vigs [GBS -Gy ]Vcs

* The solutions of one equation are identical to the solutions of the
other, provided the kernels are properly related

Equivalent summations of the generalized ladder sum

* To 6th order, the generalized ladder sum is
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* Inthe BS theory, these terms require the following irreducible

kernel:
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Effective theory. estimate of the bound state mass

* Take an effective short range interaction (treated as a contact
term)

* The bubble sum is — -i
A+ iAB(s)A 4+ PPAB(S)AB(s)A  +ees
= A+ IAB(s)M
— L a bound state of ) )
1—iAB(s) mass M, exists if I’IB(MB) =1
* This means that all the Feynman diagrams in the series are the same
size - the physics is non-perturbative.
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* Bound states arise in field theory from the infinite sum of
Feynman diagrams.

Estimate: bound state mass in 1+1 dimensions (1)

* Work in 1 time and 1 space dimensions (p,; p.) to remove
divergences; most results carry over to 1+3 dimensions

* The bubble in 1+1 dimensions is easy to calculate

e | ] Pk (1)1
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where A*=(P*=(m, —m,)*)((m, +m,)* - P*)



Estimate: bound state mass in 1+1 dimensions (2)

* Assume equal masses and weak binding: m;=m,=m; P2=4m? - §2;
m»d; A=2md

2 2 2 2 2 2
iB(4m2 — 52) =— ! tan”!| T " P tan”!| T " P =— !
2wA A A 4md

* The binding energy is approximately

A L st
4mod 4m

* The contact term must be negative (attractive) for a bound
state to exist.

exercise: work this out for 1+2 dimensions

The one-body limit

* If m; =, the equation should reduce o a one-body equation for m, with a
potential independent of the coordinates of m,. This is the one-body limit.

* Inscalar ¢3 theory, the generalized ladder sum has this property to each
order. The proof is in my textbook "Relativistic Quantum Mechanics and
Field Theory". Diagrammatically, for the 2nd and 4th orders
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* For scalar theories in the m; =< limit, the OBE approximation in CS theory
gives the exact result for the generalized ladder sum.

exercise: prove this




Cancellations: ¢* theory in 1+1 dimensions

* Study a simple example: ¢* theory with one interaction

* On shell scattering to 2nd order:

L w=(sp+p=(:P=p))

i(—il)=A 2Pk
; H_J H_J
s=P bubble B(s) crossed bubble B(u)

* B(s) already evaluated previously:
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* where  A’=(P*—(m,—m,))((m, +m,) - P?)

Interesting limits

* mi=my=m; P?=4m? — 62; u= 62,and m » o
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‘ exercise: evaluate these bubbles in 1+2 dimensions’

B(s)=-

B(s)+ Bu)=— Note the cancellation




Evaluation of the CS bubble in 1+1 dimension (1)

* The CS bubble has particle #1 on-shell; there is no crossed
bubble 1P+k

ip_k
2
* This can be written in the convenient form

o dk 1 1
Clo)=id J(Zn)z(Al—is](Az—Al—ieJ

i d*k 1 1
ey B - (LP k) —ie )\ mi —mi +2Pk, —ie
\(El—gP—kO—iel(El+§P+k0—ie)

Y

only pole in the lower half-plane and hence
this integral gives the exact CS result

Evaluation of the CS bubble in 1+1 dimension (2)

% This can be also be written
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* Interesting limits (as before)
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* Conclusion: the CS equation (in the scalar case when m, -> <) builds
in the cancellations.

[research exercise: this bubble diverges in 1+2 dimensions; how can it be reqularized? ]




Freeze-out of nucleon resonances (in the CS theory)

* Nucleon resonances can be excited when the mass of the off-shell
nucleon becomes bigger than (m + m_)2.

* However, in the CS theory, the mass of the off shell nucleon is
bounded from above. For two nucleon scattering at lab energy of W
> 2m (with k the internal relative nucleon three-momentum),

p=(W-k) —m*=W>—2W~m*> +k> <W (W —2m)
* Hence, nucleon resonances are not explicitly excited unless

W>2m+m,

* This is fundamentally different from Hamiltonian dynamics, where
they are excited for all W. The internal momentum must only be
larger than a minimum value

2E(k)>2m+m, = K >mm_ +im’

Resonances frozen out because “left hides right”

100

0 * Compare the "“left-hand-side” of
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Relativistic normalization condition (1)

* The normalization condition for the bound state vertex
function also follows from the scattering equation. First find

the nonlinear forms of the equation: L
M=V+[VGM =V + [MGM - [[ MGVGM

M=Vt _[MEV
* Then substitute the pole part of M and expand (away from
the pole, ie -> 0 and =G
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Relativistic normalization condition (2)

* The double poles give the bound state equation (again)

* The single poles give the normalization condition:
KRR YT [ G 'R
P —p? {&M2 (M;)}W
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[exercise: work through these details ]




CS equations for three-body systems™

* Define three-body vertex functions for each possibility

this particle is
) the “last” spectator
M
— =P >
M

M M
—/

* Then three body Faddeev-like equations emerge
automatically. For identical particles they are:

Sxe
= )
—T = 2 o M

this amplitude already
known from the 2-body sector

*Alfred Stadler, FG, and Michael Frank, Phys. Rev. C 56, 2396 (1997)

Applications of the CS theory

* (Gauge invariance can be treated exactly (lecture 4)
* Excellent fits to the NN data below 350 MeV (with y2 = 1.06 - lecture 3)

* Excellent description of the 3N binding energy with no explicit three
body force (lecture 3)

* Excellent fit to all deuteron form factors to Q2 ~ 6 GeVZ2 with one free
parameter in the current (lecture 4)

* Satisfactory description of N scattering and various quark model
calculations (not discussed)

* Exploratory study of d(e,e'p)n in Born approximation*

* To do (work in progress)

* photodisintegration and electrodisintegration of 2 and 3 body nuclei

*J. Adam Jr., F6, S.Jeschonnek, P.Ulmer, and J.W.Van Orden,
PRC 66: 044003 (2002).



Conclusions

Few body nuclei are composite systems. They must be described non-
perturbatively = integral equations for amplitudes in p space.

The features of a relativistic description depend on the formalism. In Field
form -- all generators are kinematic at the cost of negative energy states
(twice as many degrees of freedom).

Physics depends on whether or not nucleon resonances are explicitly excited
(recall: “left hides right").

A theoretically sound description of few-body reactions requires FSI and
MEC and NNN forces consistent with the two-body dynamics assumed. We
will return to this in the subsequent lectures.

The CS theory can serve as a framework for the use of any method. Take
nonrelativistic limit to interpret correspondence with relativistic theory.
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